研究業績
(*corresponding author)
原著論文
- Takiguchi, K., Yokoi, K., *Murase, D., Yokota, M, Kawabata, K., Takahashi, Y., Minami, S., Nakamura, S., Yoshimori, T., Watanabe, R., Fujimoto, M., Tanemura, A. Significant Role of Autophagy in Melanosomal Degradation of Dermal Macrophages – Therapeutic Insight Regarding Hyperpigmentation with Uncertain Etiology. J Invest Dermatol.:S0022-202X(24)02151-1.(2024)
- Yanagawa, K., Kuma, A., Hamasaki, M., Kita, S., Minami, S., Yamamuro, T., Nishino, K., Nakamura, S., Omori, H., Kaminishi, T., Oikawa, S., Kato, Y., Edahiro, R., Kawagoe, R., Matsui, I., Taniguchi, T., Tanaka, Y., Shima, T., Tabata, K., Iwatani, M., Bekku, N., Hanayama, R., Okada, Y., Akimoto, T., Kosako, H., Takahashi, A., *Yoshimori, T. The Rubicon–WIPI axis regulates exosome biogenesis during ageing. Nat. Cell Biol.,26, 1558–1570 (2024)
- Maeda, S., Sakai, S., Takabatake, Y., Yamamoto, T., Minami, S., Nakamura, J., Namba-Hamano, T., Takahashi, A., Matsuda, J., Yonishi, H., Matsui, S., Imai, A., Edahiro, R., Yamamoto-Imoto, H., Matsui, I., Takashima, S., Imamura, R., Nonomura, N., Yanagita, M., Okada, Y., Ballabio, A., Nakamura, S., Yoshimori, T., *Isaka, Y. MondoA and AKI and AKI-to-CKD Transition. J Am Soc Nephrol. :10.1681 (2024)
- Cui, M., Yamano, K., Yamamoto, K., Yamamoto-Imoto, H., Minami, S., Yamamoto, T., Matsui, S., Kaminishi, T., Shima, T., Ogura, M., Tsuchiya, M., Nishino, K., Layden, B., Kato, H., Ogawa, H., Oki, S., Okada, Y., Isaka, Y., Kosako, H., Matsuda, N., *Yoshimori, T., *Nakamura, S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. PNAS 121(2), (2024)
- Kakuda, K., *Ikenaka, K., Kuma, A., Doi, J., Aguirre, C., Wang, N., Ajiki, T., Choong, C., Kimura, Y., Mohamed, S., Badawy, M., Shima, T., Nakamura, S, Baba, K., Nagano, S., Nagai, Y., Yoshimori, T., *Mochizuki, H. Lysophagy protects against propagation of α-synuclein aggregation through ruptured lysosomal vesicles. PNAS 121(1), (2024)
- Ogura, M., Kaminishi, T., Shima, T., Torigata, M., Bekku, N., Tabata, K., Minami, S., Nishino, K., Nezu, A., Hamasaki, M., Kosako, H., *Yoshimori, T., *Nakamura, S. Microautophagy regulated by STK38 and GABARAPs is essential to repair lysosomes and prevent aging. EMBO Rep., e57300, (2023).
- Shima, T., Ogura, M., Matsuda, R., Nakamura, S., Jin, N., *Yoshimori, T., *Kuma, A. The TMEM192-mKeima probe specifically assays lysophagy and reveals its initial steps. J. Cell Biol., 222 (12): e202204048, (2023).
- *Tsai, CY., Sakakibara, S., Kuan, YD., Omori, H., El Hussien, MA., Okuzaki, D., Lu, SL., Noda, T., Tabata, K., Nakamura, S., Yoshimori, T., Kikutani, H. Opposing roles of RUBCN isoforms in autophagy and memory B cell generation. Sci Signal., 16(803):eade3599, (2023).
- Shioda, T., Ikenaka, K., Fujita, N., Kanki, T., Oka, T., Mochizuki, H., Antebi, A., *Yoshimori, T., *Nakamura, S. Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell non-autonomous autophagic and peroxidase activity. PNAS., 120, e2221553120, (2023).
- Debès, C., Papadakis, A., Grönke, S., Karalay, Ö., Tain, LS., Mizi, A., Nakamura, S., Hahn, O., Weigelt, C., Josipovic, N., Zirkel, A., Brusius, I., Sofiadis, K., Lamprousi, M., Lu, YX., Huang, W., Esmaillie, R., Kubacki, T., Späth, MR., Schermer, B., Benzing, T., Müller, RU., *Antebi, A., *Partridge, L., *Papantonis, A., *Beyer, A. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023).
- Nakamura, J., Yamamoto, T., Takabatake, Y., Namba-Hamano, T., Minami, S., Takahashi, A., Matsuda, J., Sakai, S., Yonishi, H., Maeda, S., Matsui, S., Matsui, I., Hamano, T., Takahashi, M., Goto, M., Izumi, Y., Bamba, T., Sasai, M., Yamamoto, M., Matsusaka, T., Niimura, F., Yanagita, M., Nakamura, S., Yoshimori, T., Ballabio, A., Isaka, Y. TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. JCI Insight 22;8(4):e162498. (2023)
- Tsujimoto, K., Jo, T., Nagira, D., Konaka, H., Park, JH., Yoshimura SI., Ninomiya, A., Sugihara, F., Hirayama, T., Itotagawa, E., Matsuzaki, Y., Takaichi, Y., Aoki, W., Saita, S., Nakamura, S., Ballabio, A., Nada, S., Okada, M., Takamatsu, H., Kumanogoh, A. The lysosomal Ragulator complex activates NLRP3 inflammasome in vivo via HDAC6. EMBO J., 4;42(1):e111389. (2023)
- Oe, Y., Kakuda, K., Yoshimura, S., Hara, N., Hasegawa, J., Terawaki, S., Kimura, Y., Ikenaka, K., Suetsugu, S., Mochizuki, H., *Yoshimori, T., *Nakamura, S. PACSIN1 is indispensable for amphisome-lysosome fusion during basal autophagy and subsets of selective autophagy. PLoS Genet., 18(6), e1010264, (2022)
- Yamamoto-Imoto, H., Minami, S., Shioda, T., Yamashita, Y., Sakai, S., Maeda, S., Yamamoto, T., Oki, S., Takashima, M., Yamamuro, T., Yanagawa, K., Edahiro, R., Iwatani, M., So, M., Tokumura, A., Abe, T., Imamura, R., Nonomura, N., Okada, Y., Ayer, E D., Ogawa, H., Hara, E., Takabatake, Y., Isaka, Y., *Nakamura, S., *Yoshimori, T. Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. Cell Rep., 38(9): 110444, (2022)
- Yamamuro, T., *Nakamura, S., Yanagawa, K., Tokumura, A., Kawabata, T., Fukuhara, A., Teranishi, H., Hamasaki, M., Shimomura, I., *Yoshimori, T. Loss of Rubicon in adipocytes mediates the upregulation of autophagy to promote the fasting response. Autophagy,14: 1-11, (2022)
- Jia, X., Knyazeva, A., Zhang, Y., Castro-Gonzalez, S., Nakamura, S., Carlson, L.A., Yoshimori, T., Corkery, D.P., Wu, YW. V. cholerae MakA is a cholesterol-binding pore-forming toxin that induces non-canonical autophagy. J Cell Biol., 221, e202206040, (2022)
- Yoshida, G., Kawabata, T., Takamatsu, H., Saita, S., Nakamura, S., Nishikawa, K., Fujiwara, M., Enokidani, Y., Yamamuro, T., Tabata, K., Hamasaki, M., Ishii, M., Kumanogoh, A., *Yoshimori, T. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy, 13: 1-10 (2022)
- Yamamuro, T., *Nakamura, S., Yamano, Y., Endo, T., Yanagawa, K., Tokumura, A., Matsumura, T., Kobayashi, K., Mori, H., Enokidani, Y., Yoshida, G., Imoto, H., Kawabata, T., Hamasaki, M., Kuma, A., Kuribayashi, S., Takezawa, K., Okada, Y., Ozawa, M., Fukuhara, S., Shinohara, T., Ikawa, M., *Yoshimori, T. Rubicon prevents autophagic degradation of GATA4 to promote Sertoli cell function. PLoS Genet., 17(8), e1009688, (2021)
- Fujita, T., Kubo, S., Shioda, T., Tokumura, A., Minami, S., Tsuchiya, M., Isaka, Y., Ogawa, H., Hamasaki, M., Yu, L., *Yoshimori, T., *Nakamura, S. THOC4 regulates energy homeostasis by stabilizing TFEB mRNA during prolonged starvation. J. Cell Sci.,134(6): jcs248203, (2021)
- Suzuki, N., Johmura, Y., Wang, T.W., Migita, T., Wu, W., Noguchi, R, Yamaguchi, K., Furukawa, Y., Nakamura, S., Miyoshi, I., Yoshimori, T., Ohta, T., Nakanishi, M. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy, 11, 1-18. (2021)
- *Nakamura, S., Shigeyama, S., Minami, S., Shima, T., Akayama, S., Matsuda, T., Esposito, A., Napolitano, G., Kuma, A., Namba-Hamano, T., Nakamura, J., Yamamoto, K., Sasai, M., Tokumura, A., Miyamoto, M., Oe, Y., Fujita, T., Terawaki, S., Takahashi, A., Hamasaki, M., Yamamoto, M., Okada, Y., Komatsu, M., Nagai, T., Takabatake, Y., Xu, H., Isaka, Y., Ballabio, A., *Yoshimori, T. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol., 22(10): 1252-1263, (2020)
- Choong, C.J., Okuno, T., Ikenaka, K., Baba, K., Hayakawa, H., Koike, M., Yokota, M., Doi, J., Kakuda, K., Takeuchi, T., Kuma, A., Nakamura, S., Nagai, Y., Nagano, S., Yoshimori, T., Mochizuki, H. Alternative mitochondrial quality control mediated by extracellular release. Autophagy, 10, 1-13, (2020)
- Yamamuro, T., Kawabata, T., Fukuhara, A., Saita, S., Nakamura, S., Takeshita, H., Fujiwara, M., Enokidani, Y., Yoshida, G., Tabata, K., Hamasaki, M., Kuma, A., Yamamoto, K., *Shimomura, I. and *Yoshimori, T. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat. Commun., 11, 4150, (2020)
- *Murase, D., Kusaka-Kikushima, A., Hachiya, A., Fullenkamp, Stepp, A., Imai, A., Ueno, M., Kawabata, K., Takahashi, Y., Hase, T., Ohuchi, A., Nakamura, S. and Yoshimori, T. Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation. Int. J. Mol. Sci., 21, E5708, (2020)
- Sakae, Y., Oikawa, A., Sugiura, Y. Mita, M. Nakamura, S., Nishimura, T., Suematsu, M. and *Tanaka, M. Starvation causes female to male sex reversal through lipid metabolism in the teleost fish, medaka (Olyzias latipes). Biol. Open, 9, bio050054, (2020)
- Nakamura, S., Oba, M, Suzuki M, Takahashi T, Yamamuro T, Fujiwara M, Ikenaka K, Minami M, Tabata N, Yamamoto, K., Kubo, S., Tokumura A., Akamatsu, K., Miyazaki, Y., Kawabata, T., Hamasaki, M., Fukui, K., Sango, K., Watanabe, Y., Takabatake, Y., Kitajima, S T., Okada, Y., Mochizuki, H., Isaka, Y., Antebi, A., *Yoshimori, T. Suppression of autophagic activity by Rubicon is a signature of aging. Nat Commun.,10(1): 847, (2019)
- Chang, C., Young, LN., Morris, KL., von Bülow, S., Schöneberg, J., Yamamoto-Imoto, H., Oe, Y., Yamamoto, K., Nakamura, S., Stjepanovic G., Hummer G., Yoshimori T., *Hurley JH. Bidirectional Control of Autophagy by BECN1 BARA Domain Dynamics. Mol. Cell, 73, 339-353, (2019)
- Tiku, V., Jain, C, Raz, Y., Nakamura, S., Heestand, B., Liu, W., Späth, M., Suchiman, H., Müller, R., Slagboom, E., Partridge, L. and *Antebi, A. Small nucleoli are a cellular hallmark of longevity. Nat. Commun., 8, 16308, (2017)
- Sasai, M., Sakaguchi, N., Ma JS., Nakamura, S., Kawabata, T., Bando, H., Lee, Y., Saito, T., Akira, S., Iwasaki, A., Standley, M., Yoshimori, T. and *Yamamoto, M. Essential Role of GABARAPs in Interferon-Inducible GTPase-Mediated LC3-Independent Host Defense. Nat. Immunol., 18, 899-910, (2017)
- Wang, D., Hou, L., Nakamura, S., Su, M., Li, F., Chen, W., Yan, Y., Green, CD., Chen, D., Zhang, H., Antebi, A. and *Han JJ. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell, 16, 113-124, (2017)
- Nakamura, S., Karalay, O., Jaeger, P, Horikawa, M., Nakamura, K., Latza, C., Klein, C., Templer, S., Dieterich, C., *Antebi, A. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun.,7: 10944, (2016)
- Nishimura, T., Herpin, A., Kimura, T., Hara, I., Kawasaki, T., Nakamura, S., Yamamoto, Y., Saito, T, Yoshimura, J., Morishita, S., Tsukahara, T., Kobayashi, S., Naruse, K., Shigenobu, S., Sakai, N., Schartl, M., *Tanaka, M. Analysis of a novel gene, Sdgc, reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development, 147(17): 3363-3369, (2014)
- Horn, M., Geisen, C., Cermak, L., Becker, B., Nakamura, S., Klein, C., Pagano, M. and *Antebi, A. DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 governs C. elegans developmental timing and maturation. Dev. Cell, 28, 697-710, (2014)
- Nakamura, S., Watakabe, I., Nishimura, T., Picard, JY., Toyoda, A., Taniguchi, T., di Clemente, N. and *Tanaka, M. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development, 139, 2283-2287, (2012)
- Nakamura, S., Watakabe, I., Nishimura, T., Toyoda, A., Taniguchi, Y. and *Tanaka, M. Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One, 7, e29982, (2012)
- Nakamura, S., Kobayashi, K., Nishimura, T., Higashijima, S. and *Tanaka, M. Identification of germline stem cells in the ovary of the teleost medaka. Science, 328, 1561-1563, (2010)
- Herpin, A., Braasch, I., Kraeussling, M., Schmidt, C., Thoma, EC., Nakamura, S., Tanaka, M. and *Schartl, M. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements. PLoS Genet.,6, e1000844, (2010)
- Nakamura, S., Kurokawa, H., Asakawa, S., Shimizu, N. and *Tanaka, M. Two distinct types of theca cells in the medaka gonad: germ cell-dependent maintenance of cyp19a1 expressing theca cells. Dev. Dyn., 238, 2652-2657, (2009)
- Aoki, Y., Nakamura, S., Ishikawa, Y. and *Tanaka, M. Expression and syntenic analysis of four nanos genes in medaka. Zool. Sci., 26, 112-118, (2009)
- Herpin, A., Nakamura, S., Wagner, T., Tanaka, M. and *Schartl, M. A highly conserved cis-regulatory motif directs differential gonadal synexpression of Dmrt1 transcripts during gonad development. Nucleic Acids Res., 37, 1510-1520, (2009)
- Nakamura, S., Aoki, Y., Saito, D., Kuroki, Y., Fujiyama, A., Naruse, K. and *Tanaka, M. Sox9b/sox9a2-EGFP transgenic medaka reveals the morphological reorganization of the gonads and a common precursor of both the female and male supporting cells. Mol. Reprod. Dev., 75, 472-476, (2008)
- Kurokawa, H., Saito, D., Nakamura, S., Katoh-Fukui, Y., Ohta, K., Baba,T., Morohashi K., and *Tanaka, M. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc. Natl. Acad. Sci. USA, 104, 16958-16963, (2007)
- Saito, D., Morinaga, C., Aoki, Y., Nakamura, S., Mitani, H., Furutani-Seiki, M., Kondoh, H. and *Tanaka, M. Proliferation of germ cells during gonadal sex differentiation in medaka: insights from germ cell depleted mutant zenzai. Dev. Biol., 310, 280-290, (2007)
- Morinaga, C., Saito, D., Nakamura, S., Sasaki, T., Asakawa, S., Shimizu, N., Mitani, H., Furutani-Seiki, M., *Tanaka, M. and *Kondoh, H. The hotei mutation of medaka in the anti-Müllerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc. Natl. Acad. Sci. USA, 104, 9691-9696, (2007)
- Nakamura, S., Kobayashi, D., Aoki, Y., Yokoi, H., Ebe, Y., Wittbrodt, J and *Tanaka, M. Identification and lineage tracing of two population of somatic gonadal precursors in medaka embryos. Dev. Biol., 295, 678-688, (2006)
- Kurokawa, H., Aoki, Y., Nakamura, S., Ebe, Y., Kobayashi, D and *Tanaka, M. Time-lapse analysis reveals different modes of primordial germ cell migration in the medaka Oryzias latipes. Develop. Growth Differ., 48, 209-221, (2006)
2024
2023
2022
2021
2020
2019
~2017
英文総説・著書
- Cuervo, AM., Elazar, Z., Evans, C., Ge, L., Hansen, M., Jäättelä, M., Liang, JRA., Loos, B., Mizushima, N., Simon, AK., Tooze, S., Yoshimori, T.,Nakamura, S.Next questions in autophagy, Nature Cell Biology (2024)
- Makino, M.,*Nakamura, S. A novel probe to monitor lysosome-mitochondria contact sites opens up a new path to study neurodegenerative diseases, Cell Calcium., (2024)
- Oe, Y., *Yoshimori, T., *Nakamura, S. Novel insights into the molecular mechanism of amphisome-lysosome fusion. Autophagy Reports, 1, 542-545, (2022)
- *Nakamura, S., Shioda, T., *Yoshimori, T. Autophagy in aging and longevity (Chapter11), Aging Mechanism II: Longevity, Metabolism and Brain Aging (Springer) (2022)
- Oe, Y., *Yoshimori, T., *Nakamura, S. Novel insights into the molecular mechanism of amphisome-lysosome fusion. Autophagy Reports, 1, 542-545, (2022)
- Yamamoto-Imoto, H., Hara, E., *Nakamura, S., *Yoshimori, T. Measurement of autophagy via LC3 western blotting following DNA-damage-induced senescence. STAR Protoc., 3, 101539, (2022)
- Cui, M., *Yoshimori, T., *Nakamura, S.Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int., 155, 105308, (2022)
- *Nakamura, S., Akayama, S., *Yoshimori, T. Non-canonical roles of ATG8 for TFEB activation. Biochem Soc Trans., 50, 47-54, (2022)
- Ogura, M., Shima, T., Yoshimori, T., *Nakamura, S. Protocols to monitor TFEB activation following lysosomal damage in cultured cells using microscopy and immunoblotting. STAR Protoc., 3, 101018, (2022)
- Minami, S., *Nakamura, S., *Yoshimori, T. Rubicon in Metabolic Disease and Aging. Front. Cell Dev. Biol., 9, 816829, (2022)
- Minami, S., *Nakamura, S. Therapeutic potential of Beclin1 for transition from AKI to CKD: autophagy-dependent and autophagy-independent functions. Kidney Int., 10, 13-15, (2022)
- *Nakamura, S., Akayama, S., *Yoshimori, T. Autophagy-independent function of lipidated LC3 essential for TFEB activation during the lysosomal damage responses. Autophagy, 17, 581-583, (2021)
- Nakamura, S. and *Yoshimori, T. Autophagy and Longevity. Mol. Cells., 41, 65-72, (2018)
- Nakamura, S. and *Yoshimori, T. New insights into autophagosome-lysosome fusion. J. Cell Sci., 130, 1209-1216, (2017)
- Martens, S., Nakamura, S. and *Yoshimori, T. Phospholipids in Autophagosome Formation and Fusion. J. Mol. Biol., 428, 4819-4827, (2016)
- Nakamura, S., Hasegawa, J. and *Yoshimori, T. Regulation of lysosomal phosphoinositide balance by INPP5E is essential for autophagosome–lysosome fusion. Autophagy, 12, 2500-2501, (2016)
- Nishimura, T., Nakamura, S. and *Tanaka, M. A Structurally and Functionally Common Unit in Testes and Ovaries of Medaka (Oryzias latipes), a Teleost Fish. Sex. Dev., 10, 159-165, (2016)
- Nakamura, S., Kobayashi, K., Nishimura, T. and *Tanaka, M. Ovarian Germline Stem Cells in the Teleost Fish, Medaka (Oryzias latipes). Int. J. Biol. Sci., 7, 403-409, (2011)
- Nakamura, S., Saito, D. and *Tanaka, M. Generation of transgenic medaka using modified bacterial artificial chromosome. Develop. Growth Differ., 50, 415-418, (2008)
日本語総説・著書
- 井本ひとみ、中村修平「細胞老化におけるオートファジーの制御と役割」実験医学増刊 Vol.42 No.20 細胞老化―真の機能を深く理解する 2024年
- 中村修平「概論 -種々の生命現象に関わるリソソームの新たな姿-」実験医学 7月号 2023年 (リソソーム特集企画を担当)
- 小倉もな美、吉森 保、中村修平「リソソーム損傷応答とその生理学的意義」実験医学 7月号 2023年
- 中村 修平、 井本 ひとみ、 吉森 保「(抗老化医療の未来をさぐる:哺乳類における老化・寿命制御の理解とその社会実装) オートファジーと老化」Geriatric Medicine 61(1) 45-49 2023年
- 小倉もな美、吉森 保、中村修平 「損傷リソソーム応答によるリソソーム恒常性の維持機構」生体の科学 73, 3, 221-225, 2022年
- 中村修平、吉森保「オートファジーと老化・神経変性疾患」老年精神医学雑誌 33, 79-86, 2022年
- 中村 修平、小倉もな美、吉森 保「リソソーム損傷応答におけるリソファジーの制御と生理的意義」実験医学 Vol. 39, No. 13, 2067-2072, 2021年
- 中村修平、吉森保「老化機構の新たな視点 -加齢に伴うオートファジー低下は老化の要因となる-」Geriatric Medicine (老年医学) 59(7), 659-664, 2021年
- 中村 修平、 吉森 保「オートファジーと寿命延長」 医学のあゆみ Vol. 272, 926-932, 2020年
- 中村 修平、吉森 保「オートファジーと寿命制御」老年内科2, 698-703, 2020年
- 中村 修平、塩田達也、吉森 保「オートファジーと老化・寿命制御」細胞 Vol.52, No.11, 8-11, 2020年
- 中村 修平、塩田達也、吉森 保「加齢にともなうオートファジー低下のメカニズム」生化學Vol.92, No.2, 236-239, 2020年
- 中村 修平「長寿フロントライン、加齢によるオートファジー低下機構の解明 」Aging and Health 92, 2020年
- 中村 修平、 吉森保、第20章 「オートファジーと老化」オートファジー 分子メカニズムの理解から病態の解明まで 南山堂, 2018年
- 中村 修平、 吉森 保「Theオートファジー 研究者たちの集大成が見える最新ビジュアルテキスト、(第2章)オートファジーの分子機構 オートファゴソーム成熟と融合の分子機構 」実験医学 Vol. 35, No.15, 2510 – 2515, 2017年
- 中村 修平、 吉森 保「哺乳類オートファジーの分子機構と癌における役割」The Word on Digestive Surgery 18, 2-3, 2017年
- 中村 修平、小林佳代、西村俊哉、 田中 実「メダカにおける生殖幹細胞と性分化」生化學 Vol. 83, No. 7, 627 – 632, 2011年
- 中村 修平、 小林佳代、西村俊哉、田中実 「配偶子幹細胞:世代をつなぐキープレーヤーの正体と可能性 メダカ卵巣の配偶子幹細胞」 細胞工学 Vol. 29, No. 7, 664-669, 2010年
- 中村 修平、青木 裕美子、田中 実 「メダカ始原生殖細胞のEST解析」日本比較内分泌学会誌112, 13-16, 2004年
- 田中 実、木下 政人、青木 裕美子、中村 修平 「RNA翻訳制御による生殖細胞形成:メダカを中心に」細胞工学 Vol. 22, No. 10, 1073-1076, 2003年